

Turbocharging Serverless Research with vHive

Dmitrii Ustiugov

PhD Student at the University of Edinburgh

Serverless Rapid and Ubiquitous Adoption

The serverless market is expected to reach \$7.7B by 2021

Estimated size of the serverless & function-as-a-service market annually, 2016 - 2021

vHive

Serverless has emerged as the next dominant cloud architecture

Why Service Developers Love Serverless

Service Developer's Perspective

Write each function's business logic

Compose functions via event triggers and RPC calls

Serverless premise:"No need to think about servers"

Provider's Perspective

Function instances are ephemeral, spawned on demand

- 0 to ∞ instances of each function
- Provider to balance load and spawn / tear down instances

Serverless reality: Great for users, challenging for providers

Time for Serverless Systems Research!

How to Do Research in Serverless?

Study serverless cloud infrastructure

ASE Lab ©

Dmitrii Ustiugov

Innovate & prototype across deep software/hardware stack

Evaluate your prototype with real workloads

What is inside serverless clouds?

The vHive Ecosystem

Study clouds

Innovate & prototype

Evaluate

Study Production Clouds with STeLLAR [IISWC'21]

the UNIVERSITY of EDINBURGH

Traffic of

function invocations

Benchmarking a Serverless Cloud with STeLLAR

- **Key:** Clouds are different, the architecture is the same
- Any serverless cloud has 3 components: the scheduler, a fleet of worker nodes, and storage

We introduce STeLLAR for **performance analysis**

- Configure function characteristics & traffic shape
- Benchmark each component separately with the STeLLAR client, loading & measuring response time
- Evaluated AWS, Azure, Google functions in California ۰

Worker: Warm & Cold Function Invocations

Although cold-start latencies are much higher, latency is predictable

Storage: Data Transfers (Warm)

Functions can communicate only via storage (e.g., AWS S3)

Evaluation with 2 functions (producer and consumer)

Storage-based transfers is the key tail latency source

Scheduler: Policy Implications (Warm)

Setup

- Warm invocations
- I and I00 invocations in a burst
- Function execution time: I second

Results

- Google: High latency but moderate queuing
- Azure: Very high latency, hence **abundant queueing** (~30% of invocations wait)
- AWS: No latency increase, hence no invocation queuing allowed

The vHive Ecosystem

STeLLAR

Innovate & prototype

Evaluate

Innovate & Prototype with vHive [ASPLOS'21]

Studying Serverless: State-of-the-Art Frameworks

Complex distributed software stack

Incomplete or non-representative

- Single component, e.g., hypervisor
- Container isolation only (e.g., OpenWhisk, OpenLambda)
 - but >70% of the market (AWS, Azure, Google) rely on VMs

Need for a complete open-source framework for serverless research

Serverless in the Age of Open Source

vHive: Framework for Serverless Experimentation

Dmitrii Ustiugov - EASE Lab ©

vHive Architecture

THE UNIVERSITY of EDINBURGH informatics

vHive clients: Load and measure latency of invocations

Cluster infrastructure

- Kubernetes cluster scheduler
- Knative Function-as-a-Service programming interface
 - Arbitrary Docker-images deployment
 - Autoscaling function instances on demand

Worker nodes

- MicroVM manager that drives MicroVMs lifecycle
- Control plane: Containerd
- Data plane: gRPC

First to support snapshots (Firecracker) at scale

The vHive Ecosystem

f**m**vHive

STeLLAR

Evaluate

vSwarm: The Representative Benchmark Suite

Teamed up with ETH, Stanford, and the broad systems community

vSwarm benchmarks include

- 30 individual (leaf) functions in 4 language runtimes
- 8 multi-function applications (video analytics, ML training, distributed compilation, ...)
- Integration with AWS S3, AWS Elasticache Redis, Apache Kafka, KubeEdge (in progress)

Workloads come with distributed tracing & microarchitectural analysis tools

Future work: Gem5 simulator images (stay tuned!)

What Kind of Research Can vHive Help?

Operating systems

• Record-and-Prefetch snapshots for accelerating cold starts [ASPLOS'21]

Communication & distributed systems

Fast & autoscaling communication fabric for serverless [under submission]

Processor microarchitecture

Microarchitectural state prefetching for serverless [under submission]

vHive Open-Source Community Today

ASPLOS'21: Distinguished Artifact Award

- Used at 16+ universities (research & course)
- 5 external contributing organizations
- 100 unique cloners/day (GitHub)

Industrial collaborators:

31

Supervisors

PhD student & leader

Students & Interns & Alumni

More contributors at <u>https://github.com/ease-lab/vhive</u>

What is inside serverless clouds?

With vHive, the clouds are clear.

Study clouds Innovate & prototype

Evaluate

Join the vHive Open-Source Community

- https://github.com/ease-lab/STeLLAR ()
 - https://github.com/ease-lab/vhive https://github.com/ease-lab/vSwarm

- firecracker-microvm.slack.com channel: #firecracker-vhive-research

Backup

Tools for In-Depth Performance Analysis

Distributed Tracing

Serverless systems are complex & distributed

• Diverse provider and user components

CPU Microarchitectural Profiling

Worker nodes run up to 1000s of functions

• All CPU resources are shared and/or multiplexed

vHive natively supports IntelTopDown [Yasin'14]

Components